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Overview: Life’s Operating Instructions

• In 1953, James Watson and Francis Crick
introduced an elegant double-helical model for 
the structure of deoxyribonucleic acid, or DNA

• Hereditary information is encoded in DNA and 
reproduced in all cells of the body

• This DNA program directs the development of 
biochemical, anatomical, physiological, and (to 
some extent) behavioral traits
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Concept 16.1: DNA is the genetic material

• Early in the 20th century, the identification of the 
molecules of inheritance loomed as a major 
challenge to biologists

• Question :  What is the molecules of inheritance?
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The Search for the Genetic Material: Scientific 
Inquiry

• When T. H. Morgan’s group showed that genes 
are located on chromosomes, the two 
components of chromosomes—DNA and 
protein—became candidates for the genetic 
material

• The key factor in determining the genetic 
material was choosing appropriate 
experimental organisms (模式生物)

• The role of DNA in heredity was first 
discovered by studying bacteria and the viruses 
that infect them
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Evidence That DNA Can Transform Bacteria

• The discovery of the genetic role of DNA began 
with research by Frederick Griffith in 1928

• Griffith worked with two strains of a bacterium 
(Streptococcus pneumoniae 肺炎鏈球菌), one 
pathogenic and one harmless
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• When he mixed heat-killed remains of the 
pathogenic strain with living cells of the 
harmless strain, some living cells became 
pathogenic

• He called this phenomenon transformation , 
now defined as a change in genotype and 
phenotype due to assimilation of foreign DNA
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• In 1944, Oswald Avery, Maclyn McCarty, and 
Colin MacLeod announced that the 
transforming substance was DNA

• Their conclusion was based on experimental 
evidence that only DNA worked in transforming 
harmless bacteria into pathogenic bacteria

• Many biologists remained skeptical, mainly 
because little was known about DNA
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Evidence That Viral DNA Can Program Cells

• More evidence for DNA as the genetic material 
came from studies of viruses that infect 
bacteria

• Such viruses, called bacteriophages (or 
phages ; 噬菌體噬菌體噬菌體噬菌體 ), are widely used in molecular 
genetics research
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• In 1952, Alfred Hershey and Martha Chase
performed experiments showing that DNA is 
the genetic material of a phage known as T2

• To determine the source of genetic material in 
the phage, they designed an experiment 
showing that only one of the two components 
of T2 (DNA or protein) enters an E. coli cell 
during infection

• They concluded that the injected DNA of the 
phage provides the genetic information 
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Additional Evidence That DNA Is the Genetic 
Material

• It was known that DNA is a polymer of 
nucleotides, each consisting of a nitrogenous 
base, a sugar, and a phosphate group

• In 1950, Erwin Chargaff reported that DNA 
composition varies from one species to the 
next

• This evidence of diversity made DNA a more 
credible candidate for the genetic material
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• Chargaff’s rules state that in any species there 
is an equal number of A and T bases, and an 
equal number of G and C bases
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Building a Structural Model of DNA:
Scientific Inquiry

• After most biologists became convinced that 
DNA was the genetic material, the challenge 
was to determine how its structure accounts for 
its role

• Maurice Wilkins and Rosalind Franklin were 
using a technique called X-ray crystallography 
to study molecular structure

• Franklin produced a picture of the DNA 
molecule using this technique
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Fig. 16-6
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• Franklin’s X-ray crystallographic images of 
DNA enabled Watson to deduce that DNA was 
helical  

• The X-ray images also enabled Watson to 
deduce the width of the helix and the spacing 
of the nitrogenous bases

• The width suggested that the DNA molecule 
was made up of two strands, forming a double 
helix
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Fig. 16-7
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• Franklin had concluded that there were two 
antiparallel sugar-phosphate backbones, with 
the nitrogenous bases paired in the molecule’s 
interior 

• Watson and Crick built models of a double helix 
to conform to the X-rays and chemistry of DNA
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• At first, Watson and Crick thought the bases 
paired like with like (同類相聚; A with A, and so 
on), but such pairings did not result in a uniform 
width 

• Instead, pairing a purine (A or G) with a 
pyrimidine (T or C) resulted in a uniform width 
consistent with the X-ray
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Fig. 16-UN1
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• Watson and Crick reasoned that the pairing 
was more specific, dictated by the base 
structures

• They determined that 

– adenine (A) paired only with thymine (T),

– guanine (G) paired only with cytosine (C)

• The Watson-Crick model explains Chargaff’s 
rules: in any organism the amount of A = T, 
and the amount of G = C
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Concept 16.2: Many proteins work together in 
DNA replication and repair

• The relationship between structure and 
function is manifest in the double helix

• Watson and Crick noted that the specific base 
pairing suggested a possible copying 
mechanism for genetic material
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The Basic Principle: Base Pairing to a Template 
Strand

• Since the two strands of DNA are 
complementary ( 互補互補互補互補), each strand acts as a 
template for building a new strand in replication

• In DNA replication, the parent molecule 
unwinds, and two new daughter strands are 
built based on base-pairing rules
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Fig. 16-9-3
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• Watson and Crick’s semiconservative model  
of replication predicts that when a double 
helix replicates, each daughter molecule 
will have one old strand (derived or 
“conserved” from the parent molecule) and one 
newly made strand

• Competing models were the conservative 
model (the two parent strands rejoin) and the 
dispersive model (each strand is a mix of old 
and new)

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings



Fig. 16-10
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• Experiments by Matthew Meselson and 
Franklin Stahl supported the semiconservative 
model 

• They labeled the nucleotides of the old strands 
with a heavy isotope of nitrogen, while any new 
nucleotides were labeled with a lighter isotope
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• The first replication produced a band of hybrid 
DNA, eliminating the conservative model

• A second replication produced both light and 
hybrid DNA, eliminating the dispersive model 
and supporting the semiconservative model
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DNA Replication: A Closer Look

• The copying of DNA is remarkable in its speed 
and accuracy

• More than a dozen enzymes and other proteins 
participate in DNA replication
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Getting Started

• Replication begins at special sites called 
origins of replication , where the two DNA 
strands are separated, opening up a 
replication “bubble”

• A eukaryotic chromosome may have hundreds 
or even thousands of origins of replication

• Replication proceeds in both directions from 
each origin, until the entire molecule is copied
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Fig. 16-12b
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• At the end of each replication bubble is a 
replication fork , a Y-shaped region where 
new DNA strands are elongating

• Helicases are enzymes that untwist the double 
helix at the replication forks

• Single-strand binding protein binds to and 
stabilizes single-stranded DNA until it can be 
used as a template

• Topoisomerase corrects “overwinding” ahead 
of replication forks by breaking, swiveling, and 
rejoining DNA strands
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• DNA polymerases cannot initiate synthesis of a 
polynucleotide; they can only add nucleotides to 
the 3′ end

• The initial nucleotide strand is a short RNA 
primer
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• An enzyme called primase can start an RNA 
chain from scratch and adds RNA nucleotides 
one at a time using the parental DNA as a 
template

• The primer is short (5–10 nucleotides long), and 
the 3′ end serves as the starting point for the 
new DNA strand
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Synthesizing a New DNA Strand

• Enzymes called DNA polymerases catalyze 
the elongation of new DNA at a replication fork

• Most DNA polymerases require a primer and a 
DNA template strand

• The rate of elongation is about 500 nucleotides 
per second in bacteria and 50 per second in 
human cells
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• Each nucleotide that is added to a growing 
DNA strand is a nucleoside triphosphate

• dATP supplies adenine to DNA and is similar to 
the ATP of energy metabolism

• The difference is in their sugars: dATP has 
deoxyribose while ATP has ribose

• As each monomer of dATP joins the DNA 
strand, it loses two phosphate groups as a 
molecule of pyrophosphate
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Antiparallel Elongation

• The antiparallel structure of the double helix 
(two strands oriented in opposite directions) 
affects replication

• DNA polymerases add nucleotides only to the 
free 3′ end of a growing strand; therefore, a 
new DNA strand can elongate only in the 5 ′ ′ ′ ′ to
    3′  ′  ′  ′  direction
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• Along one template strand of DNA, the DNA 
polymerase synthesizes a leading strand 
continuously, moving toward the replication fork
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• To elongate the other new strand, called the 
lagging strand , DNA polymerase must work in 
the direction away from the replication fork

• The lagging strand is synthesized as a series of 
segments called Okazaki fragments (岡崎, 
1968), which are joined together by DNA ligase
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Fig. 16-16b5
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Fig. 16-16b6
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The DNA Replication Complex

• The proteins that participate in DNA replication 
form a large complex, a “DNA replication 
machine”

• The DNA replication machine is probably 
stationary during the replication process

• Recent studies support a model in which DNA 
polymerase molecules “reel in” parental DNA 
and “extrude” newly made daughter DNA 
molecules
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Proofreading and Repairing DNA

• DNA polymerases proofread newly made DNA, 
replacing any incorrect nucleotides

• In mismatch repair of DNA, repair enzymes 
correct errors in base pairing

• DNA can be damaged by chemicals, radioactive 
emissions, X-rays, UV light, and certain 
molecules (in cigarette smoke for example)

• In nucleotide excision repair , a nuclease cuts 
out and replaces damaged stretches of DNA
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Replicating the Ends of DNA Molecules

• Limitations of DNA polymerase create problems 
for the linear DNA of eukaryotic chromosomes

• The usual replication machinery provides no 
way to complete the 5′ ends, so repeated 
rounds of replication produce shorter DNA 
molecules
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• Eukaryotic chromosomal DNA molecules have 
at their ends nucleotide sequences called 
telomeres

• Telomeres do not prevent the shortening of 
DNA molecules, but they do postpone the 
erosion of genes near the ends of DNA 
molecules

• It has been proposed that the shortening of 
telomeres is connected to aging
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• If chromosomes of germ cells became shorter 
in every cell cycle, essential genes would 
eventually be missing from the gametes they 
produce

• An enzyme called telomerase catalyzes the 
lengthening of telomeres in germ cells
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• The shortening of telomeres might protect cells 
from cancerous growth by limiting the number 
of cell divisions

• There is evidence of telomerase activity in 
cancer cells, which may allow cancer cells to 
persist
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Concept 16.3 A chromosome consists of a DNA 
molecule packed together with proteins

• The bacterial chromosome is a double-
stranded, circular DNA molecule associated 
with a small amount of protein

• Eukaryotic chromosomes have linear DNA 
molecules associated with a large amount of 
protein

• In a bacterium, the DNA is “supercoiled” and 
found in a region of the cell called the nucleoid
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• Chromatin is a complex of DNA and protein, 
and is found in the nucleus of eukaryotic cells

• Histones are proteins that are responsible for 
the first level of DNA packing in chromatin
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Fig. 16-21b
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• 2-nm DNA double helix

• 10-nm fiber

– DNA winds around histones to form 
nucleosome “beads”

– Nucleosomes are strung together like beads 
on a string by linker DNA 

• 30-nm fiber

– Interactions between nucleosomes cause the 
thin fiber to coil or fold into this thicker fiber
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• 300-nm fiber

– The 30-nm fiber forms looped domains that 
attach to proteins

• 700-nm Metaphase chromosome 

– The looped domains coil further

– The width of a chromatid is 700 nm
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• Most chromatin is loosely packed in the 
nucleus during interphase and condenses 
prior to mitosis
– Loosely packed chromatin

is called euchromatin 

– During interphase a few regions of 
chromatin (centromeres and telomeres) are 
highly condensed into heterochromatin

– It is difficult for the cell to express genetic 
information coded in these regions
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• Histones can undergo chemical modifications
that result in changes in chromatin organization

– For example, phosphorylation of a specific 
amino acid on a histone tail affects 
chromosomal behavior during meiosis

• Mutation of nhk-1 gene causes sterility in fly 
females

• NHK-1 (nucleosomal histone kinase-1) is an 
enzyme that phosphorylates the tail of 
histone H2A.
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You should now be able to:

Describe the contributions of the following people: Griffith; 
Avery, McCary, and MacLeod; Hershey and Chase; 
Chargaff; Watson and Crick; Franklin; Meselson and Stahl

Describe the structure of DNA
Describe the process of DNA replication; include the following 

terms: antiparallel structure, DNA polymerase, leading 
strand, lagging strand, Okazaki fragments, DNA ligase, 
primer, primase, helicase, topoisomerase, single-strand 
binding proteins

Describe the function of telomeres
Compare a bacterial chromosome and a eukaryotic 

chromosome
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